Fisher's Geometric Model with a Moving Optimum

نویسندگان

  • Sebastian Matuszewski
  • Joachim Hermisson
  • Michael Kopp
چکیده

Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an "adaptive-walk approximation," which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the "adaptive potential" of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of selected mutations and genotypic landscapes under Fisher's geometric model.

The fitness landscape-the mapping between genotypes and fitness-determines properties of the process of adaptation. Several small genotypic fitness landscapes have recently been built by selecting a handful of beneficial mutations and measuring fitness of all combinations of these mutations. Here, we generate several testable predictions for the properties of these small genotypic landscapes un...

متن کامل

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Optimum design of a double-sided permanent magnet linear synchronous motor to minimize the detent force

In the permanent magnet linear synchronous motor (PMLSM), force ripple is harmful, useless and disturbing. The force ripple is basically composed of two components: detent force and mutual force ripple. This force is influenced by the geometric parameters of the permanent magnet (PM) motors; such as width, thickness and length of the magnet poles, length and thickness of the rotor and stato...

متن کامل

Fisher's geometrical model of fitness landscape and variance in fitness within a changing environment.

The fitness of an individual can be simply defined as the number of its offspring in the next generation. However, it is not well understood how selection on the phenotype determines fitness. In accordance with Fisher's fundamental theorem, fitness should have no or very little genetic variance, whereas empirical data suggest that is not the case. To bridge these knowledge gaps, we follow Fishe...

متن کامل

Genotypic Complexity of Fisher's Geometric Model.

Fisher's geometric model was originally introduced to argue that complex adaptations must occur in small steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping of phenotypes to fitness. Of particular interest is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2014